

Fully integrated, easy to swap and well protected

Table of Contents

Phase One P5	04
Sony ILX-LR1	06
Qube 640	08
Oblique D2M	10

Phase One P5

Medium Format RGB Camera

The Phase One P5 is the revolutionary flagship 128 MP Medium Format camera that transcends its role as a mere camera - it's a survey-grade instrument set to redefine the way you capture.

Achieve exceptional results, down to 0.5 cm RMS XY/Z* absolute accuracy, making your data impeccably trustworthy. When paired with the Trinity Pro, the P5 swiftly covers large areas with survey-grade precision, significantly reducing time and costs compared to convention

nal methods. The electronic global shutter, combined with metrically calibrated lense and sensor, reduces the necessity for extensive software corrections caused by pixel distortion, ensuring the preservation of high-quality data.

Phase One P5 Technical Specifications

Sensor Resolution Sensor Type Sensor Size Shutter Type Dynamic Range Max Frame Rate

Max Frame Rat Storage Lens Options 128 MP CMOS

Medium Format

Electronic Global Shutter

80 dB 4 fps

CF Express Card, up to 2TB 80 mm (HFOV: 32° VFOV: 23) 35 mm (HFOV: 66° VFOV: 49)

80 mm Option

GSD @60 m GSD @120 m

Coverage @60 m AGL Coverage @120 m AGL 0.26 cm/px 0.52 cm/px

67 ha (0.26 cm/px GSD, 70% overlap) 135 ha (0.51 cm/px GSD, 70% overlap)

35 mm Option

GSD @60 m GSD @120 m

Coverage @60 m AGL Coverage @120 m AG 0.59 cm/px 1.18 cm/px

154 ha (0.59 cm/px GSD, 70% overlap) 309 ha (1.18 cm/px GSD, 70% overlap)

Sample Data

Flight Altitude 60 m | 197 ft. AGL

GSD 0.26 cm/px

Area 14 ha

Flight Speed 18 m/s

Images 1804

Flight Time 12.40 min

Sony ILX-LR1 RGB Camera

The SONY ILX-LR1 camera, with its cutting-edge high-accuracy capabilities and expansive coverage, seamlessly integrates into Quantum Systems drones and allows direct camera control, while delivering exceptional image quality.

The camera harnesses advanced sensor technology and processing power, resulting in a compact and light-weight solution that elevates project efficiency. Additionally, users have the flexibility to customize settings to

suit any mission, reducing data load and streamlining workflows, while maintaining image quality. This makes it an ideal choice for commercial mapping missions.

Sony ILX-LR1 Technical Specifications

Sensor Resolution
GSD @100 m AGL
GSD @120 m AGL
Coverage @120 m AGL
Coverage with 0.7 cm/px GSD
Sensor type
Sensor format
Sensor size
Lens
Payload weight (ready to fly)

61.0 MP (9504 x 6336 px)
1.57 cm/px
1.88 cm/px
491 ha (1.88 cm/px GSD, 70% overlap)
184 ha (@45 m AGL, 70% overlap)
Exmor R CMOS
35 mm full frame
35.7 x 23.8 mm
f=24 mm, F2.8
600 g

Sample Data

Flight Altitude 100m | 328 ft. AGL

GSD 1.57 cm/px

Area 60 ha

Overlap

Flight Speed 17 m/s

Images 973

Flight Time 17 min

Qube 640LiDAR Scanner

The Qube 640 is a LiDAR sensor with a 176° FOV, integrated colorization through an 8 MP camera, enhanced vegetation penetration and vertical scanning.

The Qube 640 is co-developed with YellowScan for Trinity Pro and Tactical drones. It features a selectable FOV (field of view) of up to 176°. Combined with Trinity's capabilities, it enables 32 km corridor scanning with one single flight. At 120° FOV, it improves productivity by 50% compared to its predecessor, the Qube 240.

The sensor ensures improved vegetation penetration, detailing foliage and trunks, and facilitates vertical scanning applications with reduced outer edge mismatches, thanks to the new IMU. An integrated 8 MP RGB camera enables LiDAR capture and colorization in the same flight.

Qube 640 **Technical Specifications**

Scanner **GNSS Inertial Solution Integrated Camera** Laser Range Precision 1,3 Accuracy 2,3

Scanner FOV **Shots per Second Echoes per Shot**

Center Point Density @100 m Max. Data Points Generated 4 Hesai XT32M2X SBG Quanta Micro

8 MP (for colorization purposes)

300 m 3 cm 2.5 cm 176° x 40.3°

640 000 points/sec

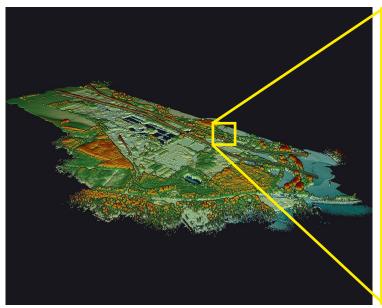
Up to 3

34 -100 points/sqm 1 920 000 points/sec

Sample Data

Flight Altitude 75 m | 246 ft. AGL

FOV 120°


Flight Time 42 min

Flight Speed 18 m/s

Area 170 ha

¹ Precision, also called reproducibility or repeatability, accounts for the variation in successive measurements taken on the same target.

² Accuracy is the degree of conformity of a measured position to its actual (true) value.

³ 1 sigma @50 m, Nadir.

⁴ Triple Echo.

Oblique D2M

Five-Lens RGB Camera

The Oblique D2M is a powerful oblique imaging system consisting of five high-resolution multidirectional cameras, making it the ideal tool for large scale 3D photogrammetry.

A fast trigger interval along with custom high-speed storage provides class-leading time efficiency without compromising data quality. The payload combines four oblique and one NADIR camera to capture complex geometries with ease. This ensures remarkable detail even on slanted surfaces and makes Oblique D2M destined for 3D mesh generation of high-rise areas, industrial environments, archaeological sites and alike.

Oblique D2M Technical Specifications

GSD
Cameras
Sensor Resolution
Total Resolution
Trigger Interval
Sensor Type
Sensor Format
Sensor Size
Focal Length
Payload Weight RTF
Flight Time
Storage

1 x NADIR, 4 x oblique 26 MP (6252 x 4168 px) 130 MP ≥ 0.8 seconds CMOS APS-C 23.5 x 15.6 mm 25 mm NADIR, 35 mm (oblique)

833.7 g 60 minutes

1.50 cm @100m AGL

High speed data storage device (640 GB)

Sample Data

Flight Altitude 120 m | 393 ft AGL

Flight Speed 17 m/s

GSD 1.8 cm/px

Applications

Surveying & GIS Services

- → Cadastre
- Detail surveying
- Asset management
- City mapping / digital twin

Energy & Telecom

- → Solar panel inspection
- Powerline inspection
- Infrastructure planning & mapping
- Infrastructure inspections

Agriculture

- → Weed management
- Crop disease / pest monitoring
- Animal counting
- Plant counting

Mining

- Progress monitoring
- Volume / stockpile calculations
- **Exploration mapping**
- Environmental impact monitoring

Construction & Infrastructure

- Road / Rail design
- → Pipeline inspection
- → Construction monitoring
- → Topographic surveys

Conservation & Environment

- → Erosion mapping
- → Coastal monitoring
- → Deforestation assessment
- → Species & habitat mapping

Forestry

- Plant counting / inventory
- Crop health
- Survival assessment
- Engineering management

Public Safety

- → Search & rescue
- → Damage & infrastructure assessment
- → Flood assessment mapping
- → Post disaster assessment & mapping

